2/y^2+9/y-9=0

Simple and best practice solution for 2/y^2+9/y-9=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/y^2+9/y-9=0 equation:


D( y )

y = 0

y^2 = 0

y = 0

y = 0

y^2 = 0

y^2 = 0

1*y^2 = 0 // : 1

y^2 = 0

y = 0

y in (-oo:0) U (0:+oo)

9/y+2/(y^2)-9 = 0

9*y^-1+2*y^-2-9 = 0

t_1 = y^-1

2*t_1^2+9*t_1^1-9 = 0

2*t_1^2+9*t_1-9 = 0

DELTA = 9^2-(-9*2*4)

DELTA = 153

DELTA > 0

t_1 = (153^(1/2)-9)/(2*2) or t_1 = (-153^(1/2)-9)/(2*2)

t_1 = (3*17^(1/2)-9)/4 or t_1 = (-3*17^(1/2)-9)/4

t_1 = (-3*17^(1/2)-9)/4

y^-1-((-3*17^(1/2)-9)/4) = 0

1*y^-1 = (-3*17^(1/2)-9)/4 // : 1

y^-1 = (-3*17^(1/2)-9)/4

-1 < 0

1/(y^1) = (-3*17^(1/2)-9)/4 // * y^1

1 = ((-3*17^(1/2)-9)/4)*y^1 // : (-3*17^(1/2)-9)/4

4*(-3*17^(1/2)-9)^-1 = y^1

y = 4*(-3*17^(1/2)-9)^-1

t_1 = (3*17^(1/2)-9)/4

y^-1-((3*17^(1/2)-9)/4) = 0

1*y^-1 = (3*17^(1/2)-9)/4 // : 1

y^-1 = (3*17^(1/2)-9)/4

-1 < 0

1/(y^1) = (3*17^(1/2)-9)/4 // * y^1

1 = ((3*17^(1/2)-9)/4)*y^1 // : (3*17^(1/2)-9)/4

4*(3*17^(1/2)-9)^-1 = y^1

y = 4*(3*17^(1/2)-9)^-1

y in { 4*(-3*17^(1/2)-9)^-1, 4*(3*17^(1/2)-9)^-1 }

See similar equations:

| 2x+4/x-1 | | 2x+114=x | | 4(0,5-1,5x)=(5x-6)/3 | | A=3.14(R^2-r^2) | | 9x-4=-27 | | -x^3-x^2+16x=-16 | | 3x+5=-x-15 | | 12x+7=7+22 | | F(x)=-x^3-x^2+16x+16 | | (9x-15)/4=2x+3 | | -2/3x=2 | | 2=-2/3x | | 5x+7x=14 | | -2x-24/8 | | 4x+23=14x-27 | | 4x-23=14x-27 | | 6x+y=31.5 | | 5x+1=-3x-15 | | 12x-8y=32 | | y/2-y/6=9 | | y=4/5x-1 | | -0.43p=36 | | 5x^2-x^0=80 | | 8/8.5*X=8 | | y=1/5x+4 | | 2x-1=15+5x | | -6t+g=6 | | -6t+6=6 | | -0.0912+0.96v=-0.168 | | -0.0912+0.96=-0.168 | | 3t+4g=6 | | 3t+2d=52 |

Equations solver categories